More than Imaging: Cancer and Cardiovascular Therapies via Focused Ultrasound

date April 8, 2014
comments no comments.

Tuesday, April 8, 2014 11:00 a.m. ETC 2.102

Dr. Linsey Phillips
University of North Carolina at
Chapel Hill & NC State University

Cancer and cardiovascular disease are two of the most common diseases affecting industrialized countries like the United States. Diagnosis and treatment are complex for these diseases, often requiring extensive imaging exams and chronic, expensive therapies. Ultrasound has the capacity for both imaging and therapy, and is less expensive and less invasive than other diagnostic and therapeutic modalities. The thermal and mechanical effects induced by ultrasound have significant therapeutic potential. In the last decade, focused ultrasound has gained popularity as a method to localize therapeutic effects including drug delivery, gene delivery, and blood-brain barrier opening. At high intensities, focused ultrasound can achieve temperatures sufficient to ablate biological tissue, and has the potential to eliminate a variety of cancers non-surgically. Focused ultrasound therapy is currently approved by the FDA for uterine fibroid and bone metastasis ablation. Few methods exist to selectively target chemotherapeutic drugs to cancer, and side effects from accumulation in non-targeted tissues remain a problem. However, focused ultrasound and targeted microbubbles overcome this major limitation of existing therapies by enabling localized, enhanced drug delivery with sub-millimeter precision. I investigate how ultrasound can improve detection and treatment of cancer and cardiovascular diseases by combining “theranostic” agents with ultrasound. Through my future research, I aim to explore new, clinically translatable therapeutic applications of focused ultrasound and acoustically active agents to treat diseases. To reach these objectives, I will use a combination of acoustics and biology, building on my 10 years of experience with ultrasound and microbubbles.