ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Wednesday, 7 February 1990
2:00 pm ETC 4.120

NOVA: THE SCIENCE OF MUSIC

A videotape of the PBS program NOVA dealing with the acoustics of music will be shown. The program covers a variety of topics including construction of musical instruments, synthesizer development, and psychological phenomena associated with music. Both historical and modern developments of the selected topics are covered.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 2 March 1990
4:00 pm ETC 4.120

by
Dr. Craig Champlin
Speech Communication
University of Texas at Austin

MEASUREMENT OF OTOACOUSTIC EMISSIONS IN HUMAN EARS

Otoacoustic emissions (OAEs) are low-level sounds that originate in the inner ear, but can be recorded in the human ear canal. These sounds come in two general classes—sounds that occur during or following acoustic stimulation are called evoked OAEs, while sounds that occur in the absence of external stimulation are called spontaneous OAEs. The measurement of both classes of OAEs will be described. Several applications of this new measure of cochlear function will also be discussed.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 9 March 1990
4:00 pm ETC 4.120

by

Dr. Kenneth H. Stokoe, II
Brunswick-Aetna Regent Professor
Department of Civil Engineering
University of Texas at Austin

APPLICATION OF STRESS WAVE MEASUREMENT TECHNIQUES IN GEOTECHNICAL ENGINEERING

The use of stress waves in nondestructive testing and evaluation of geotechnical materials has increased significantly over the past two decades. Shear and Rayleigh waves are the two types of seismic waves most often employed in situ. The primary reason for their use, rather than compression waves, is that soils (particulate materials) are often saturated and the deformational characteristics of the soil skeleton are needed. Borehole and surface measurement methods are presented, with the equipment and analysis procedures highlighted. Several case histories, such as the in situ evaluation of natural earthen dams created during the 1980 eruption of Mount St. Helens, are discussed.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 23 March 1990
4:00 PM
ETC 4.120

by
Chuck Bradley
Department of Mechanical Engineering
The University of Texas at Austin

Linear and Nonlinear Acoustic Bloch Wave Propagation in a Periodic Waveguide

A theoretical and experimental investigation of the propagation of linear and nonlinear acoustic waves in a waveguide loaded with a periodic array of scatterers is presented. It is first shown that the waves which occur in a periodic waveguide, with or without thermoviscous dissipation, are Bloch waves. The dispersion relation, impedance function, and traveling wave spectrum are derived for the case of a waveguide loaded with an array of rigidly terminated side branches. Comparisons of the theoretical results with measurements made in an air-filled waveguide show very good agreement. Examples of some of the unusual wave behavior characteristic of Bloch waves will be presented. For the case of finite amplitude excitation a quasilinear solution has been found which shows that a bidirectional excitation of second harmonic Bloch waves takes place. Comparisons with both ordinary nonlinear dispersive theory and experimental results are made.
ACOUSTICS SEMINAR
Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 6 April 1990
4:00 pm ETC 4.120

by

Professor David T. Blackstock
Dept. of Mechanical Engineering and
Applied Research Laboratories
University of Texas at Austin

EVANESCENT WAVES IN ACOUSTICS

Evanescent waves, which are disturbances that are not true waves at all, turn up in many fields of science and engineering. Examples to be discussed in this seminar are primarily from acoustics. Evanescent sound waves arise in refraction (when total internal reflection occurs), in waveguide propagation (operation below cutoff), in propagation of plane waves through horns (operation below cutoff), in radiation due to flexural vibration of surfaces (when the flexural wave speed is less than the sound speed in the surrounding fluid), and in radiation by subsonically moving objects. Except for horns, the evanescent wave is associated with failure of the disturbance to move supersonically. Evanescent waves are also common in other fields, for example, optics (refraction beyond the critical incidence) and quantum mechanics (tunneling).
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering, Engineering Mechanics, and Applied Research Laboratories

Friday, 13 April 1990
4:00 PM
ETC 4120

by
Kenneth A. Cuneo
Department of Mechanical Engineering
Pennsylvania State University

The Design Sensitivity and Control of Acoustic Power Radiated by Three-dimensional Structures

The numerical treatment of a discrete quadratic expression for the total acoustic power radiated by a three-dimensional extended structure, derived from a boundary element formulation of the Helmholtz Integral Equation, leads to an improved understanding of the sensitivity and control of the radiation of acoustic power from such structures through the development and application of three novel analysis techniques. The partial differentials of the power expression with respect to a known surface velocity distribution lead to Acoustic Design Sensitivity analysis. Acoustic Design Sensitivity analysis quantifies the change in the total radiated power due to local changes in the surface velocity distribution. The partial differentials of the acoustic power expression with respect to unknown source velocities on active noise control sources and known noise source velocities on a structure lead to Active Noise Control Optimization analysis. Active Noise Control Optimization analysis determines the optimum magnitude and phase at which to drive active noise control sources to achieve the best possible reduction in the total radiated power from a noise source/ control source combination. The partial differentials of the acoustic power with respect to a completely unknown velocity distribution, but with an imposed constraint to ensure nontrivial solutions, lead to Weak Radiator analysis. Weak Radiator analysis determines how a structure should respond to minimize its ability to radiate acoustic power, not how an actual physical structure will respond.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 26 April 1990
4:00 pm ETC 4.120

by

Tom Van Doren
Mechanical Engineering
University of Texas at Austin

I. SCATTERING OF SOUND BY SOUND IN A WAVEGUIDE

II. D.C. PRESSURE GENERATION IN A STANDING WAVE FIELD

I. Scattering of sound by sound: The interaction of two finite amplitude tones in a rectangular duct generates sound at the sum and difference frequencies of the two tones. This generation can be described using a quasilinear theory which is quite accurate for an infinite duct. An experiment is described in which a Helmholtz resonator is used as an acoustic filter for one of the tones to bound the interaction region and thus scatter the generated sum and difference frequency components outside the interaction region. The quasilinear theory is applied to the generation in the bounded region and is compared to the experiment.

II. D.C. pressure generation: A quasilinear theory for the generation of spatially varying but temporally constant pressure in a finite amplitude acoustic standing wave field will be discussed. This d.c. pressure generation will be demonstrated by acoustic levitation and acoustic fountains.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 27 April 1990
4:00 pm ETC 4.120

by

Prof. Dennis Wilson
Mechanical Engineering
University of Texas at Austin

BALLISTIC SHOCKS USED AS UNDERWATER SOUND SOURCES

Several idealized linear models will be used to illustrate the fundamental difference in a sound pressure field produced by subsonic vs. supersonic body motion. This linear theory will then be modified to account for attenuation due to dispersion when finite amplitude waves are considered. Finally, some experimental results for ballistic shocks in water will be given.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 5 May 1990
4:00 pm ETC 4.120

by

Eugene E. Kim
Mechanical Engineering
University of Texas at Austin

NONAXISYMMETRIC NONLINEAR WAVE PROPAGATION

A two-dimensional KZK (Khokhlov–Zabolotskaya–Kuznetsov) equation is used to model the nonlinear effects in a sound field that is excited by nonaxisymmetric source conditions. An algorithm developed in Norway, which numerically solves the KZK equation in the frequency domain, is employed after some modifications. Two non-axisymmetric source conditions are considered: a single source with linear amplitude shading, and a pair of displaced sources which radiate at different frequencies. The latter case is used to study the effects of high intensity on the scattering of sound by sound.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Friday, 8 June 1990
4:00 pm ETC 4.120

by
T.S. Marguies
Johns Hopkins University

SOUND WAVE PROPAGATION THROUGH MULTIPHASE MATERIALS

Theories for infinitesimal, planar sound wave propagation in a dilute suspension of rigid particles have been investigated by generally three approaches: (1) wave scattering, (2) hydrodynamic, and (3) ad hoc approaches specific to particular systems. Here, a hydrodynamic development that uses spatially averaged continuum balance and constitutive equations for multiphase materials is presented. Two alternative approaches derive equivalent results (i.e., a bicubic polynomial equation) for the complex propagation constant \(\chi = -(\alpha + ik) \), where \(\alpha \) is the spatial attenuation coefficient and \(k \) is the wavenumber. One approach uses linear momentum equations for each individual phase, while the other uses an overall linear momentum equation and a relative momentum equation, obtained by taking the sum and difference of the individual momentum equations for the continuous and particulate phases. The advantage of this latter approach is that it expresses the results in the form of a generalized Fick's law, and expresses the diffusion of particles, as well as the supply terms such as barophoresis, thermophoresis, and pycnophoresis, explicitly. Furthermore, an Einstein relation can be obtained by simply defining a diffusion coefficient, and interpreting this coefficient in the linear momentum supply term, that is proportional to the relative velocity as a Stokes viscous drag force.
ACOUSTICS SEMINAR

Jointly Sponsored By
Acoustics and Fluid Dynamics Groups
Mechanical Engineering Department

Friday, 14 September, 1990
4:00 pm ETC 7.146

by

L. A. Ostrovsky
Institute of Applied Physics of the USSR Acad. of Sci.
603600 Gorky, USSR

WAVES OF NEGATIVE ENERGY

The concept of negative energy waves in hydrodynamics and acoustics is discussed. Being excited, such waves decrease the total energy of a system which is possible only in nonequilibrium, potentially unstable systems, e.g., in a fluid with shear flow. Any kind of dissipation (viscosity, radiation from the system, etc.) in such systems may cause instability, i.e. exponential growth of the wave amplitude. Examples of such a behavior are given. Nonlinear stages of the instability are also discussed.
ACOUSTICS SEMINAR

Sponsored By
Mechanical Engineering Department

Monday, 17 September, 1990
4:00 pm ETC 4.120

Novo
videotape on

CHAOS

The new science of chaos is covered in a general manner. Strange attractors, sensitivity on initial conditions, and other chaos ideas are discussed. Many of the original researchers explain their work, including Michael Barnsley, Jerry Gollub, and UT's Harry Swinney. Applications of chaos theory to weather and biological systems are also covered.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering, Engineering Mechanics, and Applied Research Laboratories

Monday, 24 September, 1990
4:00 pm ETC 4.120

by

J. A. Hawkins, Jr. and Dr. A. Bedford

Applied Research Laboratories
The University of Texas at Austin

A Variational Model for Bubbly Liquids:
Reflection of a Plane Wave from a Bubbly Liquid Half-Space

Using a variational technique, we have investigated the acoustic properties of bubbly liquids with a distribution of bubble sizes [J. A. Hawkins, Jr. and A. Bedford, J. Acoust. Soc. Am. 86 (S1), S42 (A) 1989]. We have shown that our results are consistent with those of Commander and Prosperetti [K. W. Commander and A. Prosperetti, J. Acoust. Soc. Am 85, 732-746 (1989)], whose model for the acoustics of bubbly liquids likewise assumes a distribution of bubble sizes. They also analyzed the reflection and transmission of waves normally incident on a layer of bubbly liquid. In this talk we analyze the reflection of normal and oblique plane waves at the interface between a liquid and a bubbly liquid. Before discussing the reflection problem, we summarize the derivation of the dispersion relation for a bubbly liquid with a distribution of bubble sizes and present phase velocity and attenuation curves based on our model. The derivation of the reflection coefficients for the reflection of plane waves from a bubbly liquid half-space is presented and the resulting reflection coefficient curve is shown.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 1 October, 1990
4:00 pm ETC 4.120

by
Asst. Prof. Steve Morris
Dept. of Petroleum Engineering
The University of Texas at Austin

Ultrasonic Velocimetry and Imaging
in Two-Phase Pipe Flow

Downhole multiphase flow measurements play an important role in the efficient recovery of hydrocarbon resources. Knowing what fluids are present at any depth in a well, and what their respective flow rates are at that point, enables the petroleum engineer to make better decisions. The wide variety of flow regimes which can occur in a well make for an extremely difficult measurement problem. Acoustical techniques seem promising, though. Results from an exploratory study of ultrasonic Doppler velocimetry and imaging, as applied to two-phase pipe flow, will be presented. Experiments were done in oil-water and air-water regimes, using both vertical and inclined pipe positions.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering, Engineering Mechanics, and Applied Research Laboratories

Monday, 8 October, 1990
4:30 pm ETC 4.120

by

James TenCate, Michalakis Averkiou, and Chun-Fai Cheng
Dept. of Mechanical Engineering, The University of Texas at Austin and Applied Research Laboratories

Introducing...the Water Tank Facility for Ultrasonics

Over the past year or so, the acoustics group in the Mechanical Engineering Department has been putting together an underwater tank facility for ultrasonics on the 7th floor of ETC. Most of the hardware is finished and enough software has been written so that experiments are now beginning. This seminar will include (1) an overview of the tank itself; (2) a discussion of the computer controlled positioning apparatus; (3) some words about interfacing the tank positioning apparatus and other instruments to a Macintosh using LabVIEW; (4) discussion of some experiments we have planned. Sound boring? It won’t be. We’ll conclude by going upstairs for a look at the real thing and see a few demonstrations of what can be done.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 22 October, 1990
4:00 pm ETC 1.120

by

E. T. Vishniac
Department of Astronomy
The University of Texas

NONLINEAR INTERACTIONS BETWEEN WAVES IN ASTROPHYSICAL DISKS

Accretion disks are extremely common objects, formed as the result of the collapse of gas onto a central object. The perturbation equations for such disks can be solved to yield a variety of waves. These waves are extremely similar to waves found in the ocean and atmosphere of our own planet. In particular, we find that accretion disks support sound waves and internal waves similar to those found in the ocean. This analogy can be used to provide important insights into the nonlinear behavior of accretion disk waves. In particular, it appears likely that some combination of waves present in accretion disks are responsible for generating a magnetic dynamo and transporting angular momentum. In this talk I will discuss the nonlinear couplings between internal waves and sound waves in accretion disks, stressing the points of similarity and divergence with respect to the dynamics of our ocean.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 29 October, 1990
4:00 pm ETC 4.129

by

Dr. Thomas Griffy
Department of Physics
The University of Texas

DISPERSION RELATIONS FOR ACOUSTICS

Casuality, the physical requirement that the effect not precede the cause, implies certain relations between the speed of propagation of a signal and its attenuation. These relations are called dispersion relations or Kramers-Kronig relations. This tutorial seminar will introduce the K-K relations and discuss their applications to acoustic propagation.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 5 November, 1990
4:00 pm ETC 4.120

by
Dr. Linda M. Thibodeau
Department of Speech Communication
The University of Texas

Auditory enhancement and suppression in normal-hearing persons with reduced speech recognition in noise

Auditory enhancement and suppression have been suggested as possible mechanisms underlying one’s ability to understand speech. Using a forward-masking paradigm, enhancement and suppression effects were evaluated in two groups of normal-hearing persons who differed in their ability to recognize high-frequency words in noise. Although all subjects showed some degree of enhancement and suppression, there were differences in the degree of suppression that occurred as stimulus duration was varied. One current rehabilitative strategy for persons having difficulty understanding speech in noisy environments is the use of an FM system. After reviewing the psychosacoustic findings, a demonstration of the benefits of an FM system will be demonstrated.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Thursday, 15 November, 1990
4:00 pm ETC 4.120

by

Yang-Sub Lee
Department of Mechanical Engineering
The University of Texas

A TIME DOMAIN COMPUTER ALGORITHM
FOR PULSED NONLINEAR SOUND BEAMS

A time domain computer algorithm for solving the KZK (Kokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation has been developed for pulsed, axisymmetric, finite amplitude sound beams. The KZK equation accounts consistently for the combined effects of the thermoviscous dissipation, diffraction, and nonlinearity on sound beams radiated by directive sources. The main advantage of the algorithm is the efficiency with which calculations can be performed for tone bursts. New results include predictions of the entire process of self-demodulation, in which high frequency tone bursts evolve into distorted replicas of their envelope functions.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 3 December, 1990
4:00 pm ETC 4.120

by
Robert L. Rogers
Applied Research Laboratories
The University of Texas

THE PLASMA SOUND SOURCE SEA TRIP

A sea trip in the Gulf of Mexico was performed on the RV Longhorn. Tests were
conducted on the plasma sound source (PSS) at various depths and energies. Basic
information was obtained regarding the PSS acoustic signature and spectrum. These
appear to be the first results in which acoustical and electrical parameters were mea-
sured at kilojoule energy levels. Some of these results will be presented, and the
adventures on the Longhorn will be discussed.
ACOUSTICS SEMINAR

Jointly Sponsored By
Mechanical Engineering, Electrical and Computer Engineering,
Engineering Mechanics, and Applied Research Laboratories

Monday, 19 November, 1990
4:00 pm ETC 7.111

by

Ping Wah Li

Applied Research Laboratories and the Physics Department
The University of Texas

ON THE ABSORPTION OF FINITE AMPLITUDE SOUND WAVES

Experiments show that when a tissue is exposed to high intensity ultrasound, the
temperature increase can be much more than that expected on the basis of linear
theory. It is believed that this is caused by nonlinear effects, which enhance the
efficiency of absorption of sound waves. The goal of the present research is to study
theoretically the absorption of finite-amplitude sound waves. In the seminar, I am
going to review some previous results obtained by using weak shock theory in the
frequency domain. A new time-domain approach will then be presented. Unlike the
frequency domain approach which inevitably involves summations of infinite series,
the new approach can provide simpler solutions for elementary sound waves, such
as a continuous sinusoidal wave and an N wave pulse. However, in order to include
both nonlinear absorption and ordinary absorption, which arises from small signal
effects, the Burgers' equation must be used. Results based on the solution of Burgers'
equation which have been worked out recently will be discussed. It is found that
ordinary absorption has a significant contribution to the total absorption, both close
to and far from the source. A comparison of the results from Burgers' equation, weak
shock theory and linear theory will be discussed at the end of the seminar.