Plan

- Recap on linear acoustics
 - Linearized conservation equations
 - Near- & far-field
 - Acoustical compactness
- Acoustical energy and flow-acoustic resonances
- Green’s function and integral solutions
- Introduction to aeroacoustical analogies
 - Lighthill’s analogy
 - M^8 law
 - Choice of the acoustical variable
 - Curle’s analogy and non-compact sources
 - Aeolian tone
 - Ffowcs Williams & Hawkings analogy
 - Application to fan noise
Continuity equation

- For an infinitesimal fluid particle:

\[
\frac{1}{\rho} \frac{D \rho}{D t} = -\nabla \cdot \mathbf{v} - (\text{dilatation rate})
\]

\[
\frac{D \rho}{D t} = \frac{\partial \rho}{\partial t} + (\mathbf{v} \cdot \nabla) \rho
\]
Momentum equation

\[\rho \frac{Dv}{Dt} = -\nabla \Pi + f \]

External body forces applied to the fluid particle

External stresses applied to the fluid particle:
\[\Pi_{ij} = \rho \delta_{ij} - \sigma_{ij} \]

Hydrostatic pressure

Viscous stresses

\[\rho \frac{Dv}{Dt} = -\nabla p + \nabla \sigma + f \]
Linearization

- Continuity and momentum equations:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = Q_m \quad \quad \rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \nabla \sigma + \mathbf{f}
\]

- Perturbations = deviations with respect to uniform and stagnant fluid:

\[
\rho = \rho_0 + \rho' \\
p = p_0 + p' \\
\mathbf{v} = \mathbf{v}_0 + \mathbf{v}' = \mathbf{v}'
\]

- At first order, the continuity and momentum equations become:

\[
\frac{\partial \rho'}{\partial t} + \rho_0 \nabla \cdot \mathbf{v}' = Q_m \\
\rho_0 \frac{\partial \mathbf{v}'}{\partial t} = -\nabla p' + \nabla \cdot \sigma' + \mathbf{f}
\]
Acoustic sources

- Eliminate \(\mathbf{v}' \) from the linearized conservation equations:

\[
\frac{\partial}{\partial t} \left\{ \frac{\partial \rho'}{\partial t} + \rho_0 \nabla \cdot \mathbf{v}' = Q_m \right\}
\]

\[-\nabla \cdot \left\{ \rho_0 \frac{\partial \mathbf{v}'}{\partial t} = -\nabla p' + \nabla \cdot \mathbf{\sigma}' + \mathbf{f} \right\}\]

\[
\frac{\partial^2 \rho'}{\partial t^2} - \nabla^2 p' = -\nabla \cdot \mathbf{f} - \nabla \cdot (\nabla \cdot \mathbf{\sigma}') + \frac{\partial Q_m}{\partial t}
\]

more unknowns than equations…
Linearized constitutive equation

- Equation of state: \(p = p(\rho, s) \)

- Perturbation: \(p' = \left(\frac{\partial p}{\partial \rho} \right)_s \rho' + \left(\frac{\partial p}{\partial s} \right)_\rho s' \)

- Definition of the speed of sound: \(c_0^2 \equiv \left(\frac{\partial p}{\partial \rho} \right)_s \)

\[
p' = c_0^2 \rho' + \left(\frac{\partial p}{\partial s} \right)_\rho s'
\]
Sources of sound

\[
\frac{1}{c_0^2} \frac{\partial^2 p'}{\partial t^2} - \nabla^2 p' = -\nabla \cdot \mathbf{f} - \nabla \cdot (\nabla \cdot \mathbf{\sigma}') + \frac{1}{c_0^2} \left(\frac{\partial p}{\partial s} \right)_\rho \frac{\partial^2 s'}{\partial t^2} + \frac{\partial Q_m}{\partial t}
\]

Mass source is used as model for entropy production. We assume iso-kinetic injection (no momentum source) and isentropic process.
Monopoles, dipoles, quadrupoles

- Monopole = pulsating sphere, jumping in a boat
 - Physically: unsteady combustion, pipe exhaust, vocal folds, ...

- Dipole = oscillating sphere, playing with a ball in a boat
 - Less efficient than monopole
 - Physically: unsteady forces

- Quadrupole = deforming sphere without change of volume nor net force, fighting in a boat!
 - Less efficient than dipole
 - Physically: turbulence
Spherical waves

- Homogeneous wave propagation equation in spherical coordinates:

\[
\frac{1}{c_0^2} \frac{\partial^2 (rp')}{\partial t^2} - \frac{\partial^2 (rp')}{\partial r^2} = 0
\]

- Same solution as in 1D using \(rp' \) as unknown:

\[
rp' = f \left(t - \frac{r}{c_0} \right) + g \left(t + \frac{r}{c_0} \right)
\]

- Outgoing wave

- Incoming wave

- In frequency domain:

\[
p' = \frac{A}{r} \exp \left(i\omega \left(t - \frac{r}{c_0} \right) \right) = \frac{A}{r} \exp \left(i (\omega t - kr) \right)
\]
Far-field and near-field

- Linearized momentum equation in spherical coordinates:

\[
\rho_0 \frac{\partial v'_r}{\partial t} = -\frac{\partial p'}{\partial r}
\quad \Rightarrow \quad v'_r = \frac{p'}{\rho_0 c_0} \left(1 + \frac{1}{ikr} \right)
\]

Specific impedance: \(k = \omega/c_0 \)

- Two regimes:

 - Far-field:
 \[
 \lim_{kr \to \infty} v'_r = \frac{p'}{\rho_0 c_0} \propto \frac{1}{r}
 \]
 Plane wave behaviour

 - Near-field:
 \[
 \lim_{kr \to 0} v'_r = \frac{p'}{i\omega \rho_0 r} \propto \frac{1}{r^2}
 \]
 Locally incompressible flow
Acoustical compactness

- Upon normalization using the length scale L and the time scale τ: $\tilde{t} \equiv t/\tau \quad \tilde{x}_i \equiv x_i/L$

 the wave propagation equation

 \[
 \frac{\partial^2 \phi'}{\partial \tilde{t}^2} - c_0^2 \frac{\partial^2 \phi'}{\partial \tilde{x}_i^2} = 0
 \]

 becomes:

 \[
 \frac{\partial^2 \phi'}{\partial \tilde{x}_i^2} = \left(\frac{L}{c_0 \tau} \right)^2 \frac{\partial^2 \phi'}{\partial \tilde{t}^2} = He^2 \frac{\partial^2 \phi'}{\partial \tilde{t}^2}
 \]

 with Helmholtz number

 \[
 He \equiv \frac{L}{c_0 \tau} = \frac{\omega L}{c_0} = \frac{2\pi L}{\lambda} = k L
 \]

- Compact region: $He \ll 1 \Rightarrow \nabla^2 \phi' = 0 \quad \text{Laplace equation}$

At low Helmholtz numbers, i.e. in a compact region, the wave propagation equation reduces to the Laplace equation, describing an incompressible potential flow

Corollary: an incompressible potential flow model solves the “acoustics problem” in a compact region
Acoustical energy

- Manipulating linearized conservation equations:

\[
\frac{p'}{\rho_0} \left\{ \frac{\partial \rho'}{\partial t} + \rho_0 \nabla \cdot \mathbf{v}' = Q_m \right\} \\
+ \mathbf{v}' \cdot \left\{ \rho_0 \frac{\partial \mathbf{v}'}{\partial t} = -\nabla p' + \nabla \cdot \mathbf{\sigma}' + \mathbf{f} \right\}
\]

\[
\frac{\partial}{\partial t} \left(\frac{1}{2} \rho_0 (\mathbf{v}')^2 + \frac{1}{2} \frac{p'^2}{\rho_0 c_0^2} \right) + \nabla \cdot (p' \mathbf{v}') = \mathbf{v}' \cdot \mathbf{f} + \frac{p'}{\rho_0 c_0^2} \left(\frac{\partial p}{\partial s} \right)_\rho \frac{\partial s'}{\partial t} + \frac{p' Q_m}{\rho_0}
\]
Acoustical energy and intensity

\[
\frac{\partial E}{\partial t} + \nabla \cdot \mathbf{I} = \mathbf{v}' \cdot \mathbf{f} + \frac{p'}{\rho_0 c_0^2} \left(\frac{\partial p}{\partial s} \right)_\rho \frac{\partial s'}{\partial t} + \frac{p' Q_m}{\rho_0}
\]

- **Forces (e.g. vibrating walls)**
- **Volume source**
- **Entropic processes (e.g. combustion)**

\[
E = \frac{1}{2} \rho_0 (\mathbf{v}')^2 + \frac{1}{2} \frac{p'^2}{\rho_0 c_0^2}
\]

Acoustic energy

\[
\mathbf{I} = p' \mathbf{v}'
\]

Acoustic intensity
Integral formulation for steady harmonic oscillations

\[
\langle P \rangle = \iiint_S \langle \mathbf{I} \cdot \mathbf{n} \rangle \, dS = \iiint_V \langle \mathbf{v}' \cdot \mathbf{f} + \frac{p'Q_m}{\rho_0} \rangle \, dV
\]
Free field Green’s function in 3 dimensions

- Inhomogeneous wave equation:
 \[\frac{\partial^2 G}{\partial t^2} - c_0^2 \nabla^2 G = \delta(x - y) \delta(t - \tau) \]

- Solution:
 \[G(x, t|y, \tau) = \frac{\delta\left(t - \tau - \frac{|x - y|}{c_0}\right)}{4\pi c_0^2 |x - y|} \]

- Retarded (emission) time:
 \[\tau^* = t - \frac{|x - y|}{c_0} \]

- Important properties:
 - Dirac function \(\rightarrow \) convenient to obtain an integral solution
 - Reciprocity:
 \[G(x, t|y, \tau) = G(y, -\tau|x, -t) \]
Solution of the wave equation based on Green’s function

\[\left\{ \frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \nabla^2 \rho' = q(x, t) \right\} \times G, \iiint_V, \int_{t_0}^t \]

\[- \left\{ \frac{\partial^2 G'}{\partial t^2} - c_0^2 \nabla^2 G = \delta(x - y) \delta(t - \tau) \right\} \times \rho', \iiint_V, \int_{t_0}^t \]

\[\rho'(x, t) = \int_{t_0}^t \iiint_V q(y, \tau) G(x, t|y, \tau) \, d^3y \, d\tau \]

\[+ \int_{t_0}^t \iiint_V \left(\rho'(y, \tau) \frac{\partial^2 G}{\partial \tau^2} - G \frac{\partial^2 \rho'(y, \tau)}{\partial \tau^2} \right) \, d^3y \, d\tau \]

\[- c_0^2 \int_{t_0}^t \iiint_V \left(\rho'(y, \tau) \frac{\partial^2 G}{\partial y_i^2} - G \frac{\partial^2 \rho'(y, \tau)}{\partial y_i^2} \right) \, d^3y \, d\tau \]
Integral solution of the wave equation

- Integrating by parts:
 \[\rho'(\mathbf{x}, t) = \int_{t_0}^{t} \int_{V} \int_{V} q(\mathbf{y}, \tau) \, G(\mathbf{x}, \tau | \mathbf{y}, \tau) \, d^3y \, d\tau \]
 \[- \left[\int_{V} \int_{V} \left(\rho'(\mathbf{y}, \tau) \frac{\partial G}{\partial \tau} - G \frac{\partial \rho'(\mathbf{y}, \tau)}{\partial \tau} \right) \, d^3y \right]_{\tau=t_0} \]
 \[- c_0^2 \int_{t_0}^{t} \int_{S} \int_{S} \left(\rho'(\mathbf{y}, \tau) \frac{\partial G}{\partial y_i} - G \frac{\partial \rho'(\mathbf{y}, \tau)}{\partial y_i} \right) \, n_i \, d^2y \, d\tau \]

- Further simplifications:
 - Silent initial conditions, causality
 - No solid surface, OR: non-vibrating surfaces and tailored Green’s function

\[\rho'(\mathbf{x}, t) = \int_{t_0}^{t} \int_{V} \int_{V} q(\mathbf{y}, \tau) \, G(\mathbf{x}, \tau | \mathbf{y}, \tau) \, d^3y \, d\tau \]

Having an integral formulation improves the numerical stability of the prediction when detailed flow data (e.g. LES) are available, and otherwise permits deriving scaling laws!
Other Green’s functions

- In a few cases: analytical Green’s functions
 - Infinite planes: image sources (semi-anechoic environment)
 - Semi-infinite plane (trailing edge noise)
 - Infinite straight ducts: rectangular, cylindrical, annular

- In other cases: semi-analytical Green’s functions
 - Compact (low-frequency) Green’s functions (Howe)
 - Wiener-Hopf technique, Schwarzchild’s technique (TE-LE backscattering, Roger)
 - Slowly-varying duct (Rienstra)

- In all other cases: numerical Green’s functions
 - Low-frequency techniques
 - Finite Element Methods, Boundary Element Methods
 - High-frequency techniques
 - Ray-tracing methods, Statistical Energy Analysis
 - Mid-frequency techniques
 - Multigrid techniques, fast multipole BEM, ...
Summary

- Assuming small amplitude acoustic perturbations, the equations of fluid motion can be linearized and used to derive a wave equation for these perturbations.
- The relationship between the perturbations are given by the linearized momentum equation and the linearized constitutive equation:

\[\rho_0 \frac{\partial \mathbf{v}'}{\partial t} = -\nabla p' \]

\[p' = c_0^2 \rho' + \left(\frac{\partial p}{\partial s} \right)_\rho s' \]

- In the linear approximation, the sources of the acoustic field can be due to
 - Unsteady mass injection or entropy fluctuations \(\rightarrow \) monopolar character.
 - Non-uniform forces \(\rightarrow \) dipolar character.
 - Fluctuating viscous stresses (and, later, Reynolds stresses) \(\rightarrow \) quadrupolar character.
- Each of these sources has a different radiation efficiency in free field.
- The sound radiation is determined by the source and the impedance which it experiences!
- An integral formulation of the wave equation can be obtained using Green’s functions, which enhances the numerical robustness of the prediction.
Aeroacoustic analogies: why?

- Acoustic field = part of the flow field → most straightforward approach: Computational AeroAcoustics (CAA)
 - But: at low Mach numbers: orders of magnitude of difference between
 - Length scales: \(\lambda_{ac} = \frac{L_{turb}}{M} \)
 - Magnitudes: \(O(M^4) \) of the flow energy radiates into the far field

\[p' = 4.4934739 \text{ Pa} \]

- High order schemes needed to capture acoustic propagation
- Numerical cost of a direct CAA scales with \(Re^2 M^{-4} \) for a Large Eddy Simulation
- Specific issues related to CFD discretisation techniques applied to acoustics
 - Dissipation and dispersion errors
 - Initial and boundary conditions
Lighthill’s aeroacoustical analogy: concept

- The problem of sound produced by a turbulent flow is, from the listener’s point of view, analogous to a problem of propagation in a uniform medium at rest in which equivalent sources are placed.

- Wave propagation region: linear wave operator applies
 \[
 \frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \frac{\partial^2 \rho'}{\partial x_i^2} = 0
 \]

- Turbulent region: fluid mechanics equations apply
 \[
 \begin{align*}
 \frac{\partial \rho}{\partial t} + \frac{\partial \rho v_i}{\partial x_i} &= 0 \\
 \frac{\partial \rho v_i}{\partial t} + \frac{\partial \rho v_i v_j}{\partial x_j} &= -\frac{\partial \Pi_{ij}}{\partial x_j} \\
 \Pi_{ij} &= p \delta_{ij} - \sigma_{ij}
 \end{align*}
 \]
Lighthill’s analogy: formal derivation

\[\frac{\partial}{\partial t} \left\{ \frac{\partial \rho}{\partial t} + \frac{\partial \rho v_i}{\partial x_i} \right\} = 0 \]
Continuity

\[- \frac{\partial}{\partial x_i} \left\{ \frac{\partial \rho v_i}{\partial t} + \frac{\partial \rho v_i v_j}{\partial x_j} \right\} = - \frac{\partial \Pi_{ij}}{\partial x_j} \]
Momentum

\[\frac{\partial^2 \rho}{\partial t^2} = \frac{\partial^2 (\rho v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j} + \frac{\partial^2 p}{\partial x_i^2} \]

\[\frac{\partial^2 \rho}{\partial t^2} - c_0^2 \frac{\partial^2 \rho}{\partial x_i^2} = \frac{\partial^2 (\rho v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j} + \frac{\partial^2 (p - c_0^2 \rho)}{\partial x_i^2} \]
Lighthill’s aeroacoustical analogy: reference state

- Reformulation of fluid mechanics equations, and use of arbitrary speed c_0:
 \[
 \frac{\partial^2 \rho}{\partial t^2} - c_0^2 \frac{\partial^2 \rho}{\partial x_i^2} = \frac{\partial^2 (\rho v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j} + \frac{\partial^2 (p - c_0^2 \rho)}{\partial x_i^2}
 \]

- Definition of a reference state:
 \[
 \rho' \equiv \rho - \rho_0 \\
 p' \equiv p - p_0 \\
 v_i' \equiv v_i
 \]

- Aeroacoustical analogy:
 \[
 \frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}
 \]
 with \(T_{ij} = \rho v_i v_j + (p' - c_0^2 \rho') \delta_{ij} - \sigma_{ij} \)

\textit{Exact... and perfectly useless!}
Sound produced by free isothermal turbulent flows at low Mach number

- Solution using Green’s fct

\[\rho'(x, t) = \int_{-\infty}^{t} \int \int \int_V \frac{\partial^2 T_{ij}}{\partial y_i \partial y_j} G \, d^3 y \, d\tau - c_0^2 \int_{-\infty}^{t} \int \int_{\partial V} \left(\rho' \frac{\partial G}{\partial y_i} - G \frac{\partial \rho'}{\partial y_i} \right) n_i \, d^2 y \, d\tau \]

- Purpose: simplify the RHS

- High Reynolds number
- Isentropic
- Low Mach number

\[T_{ij} = \rho v_i v_j + (p - c_0^2 \rho') \delta_{ij} - \partial^2 \]

- Using free field Green’s fct

\[G_0(t, x | \tau, y) = \frac{\delta(t - \tau - |x - y|/c_0)}{4\pi c_0^2|x - y|} \]

\[\rho'(x, t) = \frac{\partial^2}{\partial x_i \partial x_j} \int \int \int_V \left[\frac{\rho_0 v_i v_j}{4\pi c_0^2|x - y|} \right] d^3 y \]

Quadrupolar source

\[t^* = t - \frac{|x - y|}{c_0} \]
Lighthill’s M^8 law

- **Integral solution:**
 \[
 \rho'(x, t) = \frac{\partial^2}{\partial x_i \partial x_j} \int \int \int_V \left[\frac{\rho_0 v_i v_j}{4\pi c_0^2 |x - y|} \right] d^3y
 \]

 \[
 t^* = t - \frac{|x - y|}{c_0}
 \]

- **Scaling law:**
 - Acoustic scale: \(x \propto \lambda = c_0 / f\)
 - Flow time scale: \(D / U_0\)
 - Spatial derivative: \(U_0 / (c_0D)\)

- **Acoustical power:**
 \[
 W = \frac{4\pi |x|^2 p'^2}{\rho_0 c_0} \propto \rho_0 c_0^3 D^2 M^8
 \]
Choice of the aeroacoustical variable

- Manipulating the mass and momentum equations yields:

\[
\frac{\partial^2 \rho}{\partial t^2} = \frac{\partial^2}{\partial x_i \partial x_j} (\rho v_i v_j - \sigma_{ij}) + \frac{\partial^2 p}{\partial x_i^2}
\]

- From there, two choices are possible for the acoustical variable:
 - Acoustical density perturbation:

\[
\frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \frac{\partial^2}{\partial x_i \partial x_j} (\rho v_i v_j - \sigma_{ij}) + \frac{\partial^2}{\partial x_i^2} (p' - c_0^2 \rho')
\]

 - Isentropic noise generation

 - Acoustical pressure perturbation:

\[
\frac{1}{c_0^2} \frac{\partial^2 p'}{\partial t^2} - \frac{\partial^2 p'}{\partial x_i^2} = \frac{\partial^2}{\partial x_i \partial x_j} (\rho v_i v_j - \sigma_{ij}) + \frac{\partial^2}{\partial t^2} \left(\frac{p'}{c_0^2} - \rho' \right)
\]

 - Combustion noise
Curle’s analogy: fixed rigid bodies

- **Lighthill’s aeroacoustical analogy:**
 \[
 \frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}
 \]

- **Integral solution using Green’s function**
 \[
 \rho'(x, t) = \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{V} \frac{\partial^2 T_{ij}}{\partial y_i \partial y_j} G \ d^3y \ d\tau \quad \text{incident field}
 \]
 \[
 - c_0^2 \int_{-\infty}^{t} \int_{\partial V} \left(\rho' \frac{\partial G}{\partial y_i} - G \frac{\partial \rho'}{\partial y_i} \right) n_i \ d^2y \ d\tau \quad \text{scattered field}
 \]

- **Partial integration of source integral**
 \[
 \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{V} \frac{\partial^2 T_{ij}}{\partial y_i \partial y_j} G \ d^3y \ d\tau = \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{V} T_{ij} \frac{\partial^2 G}{\partial y_i \partial y_j} \ d^3y \ d\tau
 \]
 \[
 + \int_{-\infty}^{t} \int_{\partial V} \left\{ \left(- \frac{\partial \rho v_i}{\partial \tau} - c_0^2 \frac{\partial \rho'}{\partial y_i} \right) G - \left(\rho v_i v_j + (p' - c_0^2 \rho') \delta_{ij} + \sigma_{ij} \right) \frac{\partial G}{\partial y_j} \right\} n_i \ d^2y \ d\tau
 \]

- **Curle’s analogy: uses free field Green’s function**
 \[
 G_0(t, x|\tau, y) = \frac{\delta(t - \tau - |x - y|/c_0)}{4\pi c_0^2 |x - y|}
 \]
 \[
 \rho'(x, t) = \frac{\partial^2}{\partial x_i \partial x_j} \int_{V} \int_{V} \left[\frac{T_{ij}}{4\pi c_0^2 |x - y|} \right] \ d^3y - \frac{\partial}{\partial x_i} \int_{\partial V} \left[\frac{p'n_i}{4\pi c_0^2 |x - y|} \right] \ d^2y
 \]
If you know the multipolar character of your source...

... use the corresponding Green’s function!
A popular formulation for industrial applications

- Curle's formulation is quite powerful
 - It enforces the correct radiation pattern of each source component:
 \[P_{\text{quadru}} / P_{\text{dipo}} \sim M^2 \]
 - At low Mach numbers, dipolar contribution dominates the quadrupolar one for compact sources
 - Surface scalar \((\rho')\) data are much less demanding in memory than volumetric, tensorial \((T_{ij})\) data
 - Surface mesh often available from design stage

\[
4\pi c_0^2 \rho'(x, t) = \frac{\partial^2}{\partial x_i \partial x_j} \int \int \int_V \left[\frac{T_{ij}}{|x - y|} \right] d^3y + \frac{\partial}{\partial x_i} \int \int_{\partial V} \left[\frac{\rho' n_i}{|x - y|} \right] d^2y
\]

- **Quadrupole, \(W \propto M^8\) in free field**
- **Dipole, \(W \propto M^6\) in free field**

- BUT: tricky implementation for non-compact geometries...
The hybrid approach from a practical viewpoint

- The computation of flow is decoupled from the computation of sound
 - Acoustic prediction: post-processing of source field data

- Fundamental assumption: one-way coupling
 - Unsteady flow produces sound and affects its propagation
 - BUT: sound waves do not affect flow field significantly
 - Principal application of the hybrid approach: flows at low Mach numbers

- Usable simulation tools for the flow description:
 - Reynolds Averaged Navier-Stokes (RANS) solver → time-averaged data (SNGR to reconstruct transient)
 - Unsteady RANS → unsteady, but only large scale
 - Large Eddy Simulation (LES), Detached Eddy Simulation (DES) → unsteady, broadband turbulence (up to grid & scheme cut-off frequency)

- Low-Mach number applications
 - Incompressible LES / DES solvers to reduce CPU cost
 - Careful interpretation of the flow data in aeroacoustical analogy

http://www.lmfa.ec-lyon.fr/recherche/turbo
Ffowcs Williams and Hawkings analogy: moving bodies

- Use of generalized functions to account for body motion
- Body motion trajectory described by function $F(x,y,z,t)$:

$$F = 0$$
$$|\nabla F| = 1$$

$F > 0$

$F < 0$

- Heaviside and Dirac functions properties:

$$H(F) = 0 \quad \text{inside solid body}$$
$$H(F) = 1 \quad \text{in fluid region}$$

$$\nabla (H(F)) = \delta(F) \nabla F$$
$$\frac{\partial}{\partial t} (H(F)) = \delta(F) \frac{\partial F}{\partial t}$$
Conservative equations and analogy using generalized functions

- Equations of conservation of mass and momentum can be rewritten as:

\[
\frac{\partial (\rho' H)}{\partial t} + \frac{\partial (\rho v_i H)}{\partial x_i} = \rho_0 (\mathbf{v} \cdot \nabla F) \delta(F) = \rho_0 V_n \delta(F)
\]

\[
\frac{\partial (\rho v_i H)}{\partial t} + \frac{\partial}{\partial x_j} \left[(\rho v_i v_j + p \delta_{ij} + \sigma_{ij}) H\right] = (p \delta_{ij} + \sigma_{ij}) \nabla F \delta(F)
\]

- The analogy becomes:

\[
\frac{\partial^2 (\rho' H)}{\partial t^2} - c_0^2 \frac{\partial^2 (\rho' H)}{\partial x_i^2} = \frac{\partial^2}{\partial x_i \partial x_j} (T_{ij} H) - \frac{\partial}{\partial x_i} \left[(p \delta_{ij} + \sigma_{ij}) \nabla F \delta(F)\right] + \frac{\partial}{\partial t} (\rho_0 V_n \delta(F))
\]
Integral solution

- Using the free-field Green's function:

\[\rho'(x, t) = \frac{\partial^2}{\partial x_i \partial x_j} \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{\mathcal{V}} \frac{\delta(t - \tau - |x - y|/c_0)}{4\pi c_0^2 |x - y|} T_{ij}(y, \tau) \, d^3 y \, d\tau \]

\[- \frac{\partial}{\partial x_i} \int_{-\infty}^{t} \int_{\partial \mathcal{V}} \frac{\delta(t - \tau - |x - y|/c_0)}{4\pi c_0^2 |x - y|} [p \delta_{ij} + \sigma_{ij}] (y, \tau) n_j \, d^2 y \, d\tau \]

\[+ \frac{\partial}{\partial t} \int_{-\infty}^{t} \int_{\partial \mathcal{V}} \frac{\delta(t - \tau - |x - y|/c_0)}{4\pi c_0^2 |x - y|} \rho_0 V_n(y, \tau) \, d^2 y \, d\tau \]

- More practical to have the source described in a moving coordinate system \(\eta \) attached to the body.

- Retarded time equation:

\[g(t^*, t, x, \eta) \equiv t - t^* - \frac{|x - y(\eta, t^*)|}{c_0} = 0 \]

- Dirac function property:

\[\int_{-\infty}^{\infty} \delta(h(\xi)) \, f(\xi) \, d\xi = \sum_i \frac{f(\xi_i)}{|h'(\xi_i)|}, \quad h(\xi_i) = 0 \]
Doppler effects

- Applied to the quadrupolar component:

\[
\int_{-\infty}^{t} \iiint_{V_\eta} \frac{\delta(g(\tau, t, x, \eta))}{4\pi c_0^2 |x - y(\eta, \tau)|} T_{ij} \, d^3\eta \, d\tau = \frac{1}{4\pi c_0^2} \iiint_{V_\eta} \left[\frac{T_{ij}}{R \left| 1 - \frac{\mathbf{M} \cdot \mathbf{R}}{R} \right|} \right] d^3\eta
\]

\[\mathbf{M} : \text{vector Mach number} \quad 1 - \frac{\mathbf{M} \cdot \mathbf{R}}{R} : \text{Doppler factor}\]

- Final solution:

\[
\rho'(x, t) = \frac{1}{4\pi c_0^2} \frac{\partial^2}{\partial x_i \partial x_j} \iiint_{V_\eta} \left[\frac{T_{ij}}{R \left| 1 - \frac{\mathbf{M} \cdot \mathbf{R}}{R} \right|} \right] d^3\eta
\]

\[- \frac{1}{4\pi c_0^2} \frac{\partial}{\partial x_i} \iiint_{\partial V_\eta} \left[\frac{(p \delta_{ij} + \sigma_{ij}) n_j}{R \left| 1 - \frac{\mathbf{M} \cdot \mathbf{R}}{R} \right|} \right] d^2\eta
\]

\[+ \frac{1}{4\pi c_0^2} \frac{\partial}{\partial t} \iiint_{\partial V_\eta} \left[\frac{\rho_0 V_n}{R \left| 1 - \frac{\mathbf{M} \cdot \mathbf{R}}{R} \right|} \right] d^2\eta
\]

- The flow intrinsic features (flow separation, turbulent transition, ...) are expressed in the frame of reference attached to the moving axes.

- The Doppler effects (convective amplification and frequency shift) are given by the motion of the sources in the fixed coordinate system.
Effect of relative motion

- **Fixed monopole**
- **Monopole convected at \(M = 0.7 \)**

(source: Wikipedia)
Doppler amplification

\[\Delta \varphi - \frac{1}{c_0^2} \frac{\partial^2 \varphi}{\partial t^2} = S(x, t) \quad S(y, \tau) = -q(\tau) \delta(y - U_0\tau) \]

\[\varphi(x, t) = \int_{-\infty}^{\infty} \int_V q(\tau) \frac{\delta(\tau - t + |x - y|/c_0)}{4\pi|x - y|} \delta(y - U_0\tau) \, d^3y \, d\tau \]

\[\int_{-\infty}^{\infty} f(\xi') \delta(g(\xi')) \, d\xi' = \sum_j \frac{f(\xi_j)}{\left| \frac{\partial g}{\partial \xi}(\xi_j) \right|} \]

\[g(\tau) \equiv \tau - t + |x - y(\tau)|/c_0 = 0 \]

\[\varphi(x, t) = \frac{1}{4\pi} \sum_j \frac{q(\tau_j)}{R_j \left[1 - M_0 \cos \theta_j \right]} \]

Doppler factor: amplitude modulation and directivity
Doppler frequency shift

\[q(\tau) = \hat{q} e^{i\omega \tau} \]

\[\varphi(x, t) = \frac{\hat{q}}{4\pi} \frac{e^{i\omega(t-R_1(t)/c_0)}}{R_1(1 - M_0 \cos \theta_1)} \]

\[\frac{R_1(t)}{c_0} \sim \frac{R_1(t_e)}{c_0} + \frac{1}{c_0} \left. \frac{dR_1}{dt} \right|_{t_e} (t - t_e) + \ldots \]

\[\frac{dR_1}{dt} = -\frac{M_0 \cos \theta_1}{1 - M_0 \cos \theta_1} \]

Phase factor: \(e^{i\omega t/(1 - M_0 \cos \theta_1(t_e))} \)

Modified frequency: \(\frac{\omega}{1 - M_0 \cos \theta_1(t_e)} \)

The Doppler factor accounts for all amplitude modulation and frequency shift effects; the source unsteadiness can be described in a local (moving) coordinate system attached to the moving body.
Thickness, loading, turbulence noise

- Thickness noise:

- Loading noise: steady and unsteady

\[\frac{\partial}{\partial \tau} \left(\frac{F_i}{D} \right) = \frac{1}{D} \frac{\partial F_i}{\partial \tau} - \frac{F_i}{D^2} \frac{\partial D}{\partial \tau} \]

unsteady motion

\[D = |1 - M \cdot R/R| \]

- Turbulence noise: same scaling, relative to unsteady loading noise, as for the motion loading noise \(\rightarrow \) negligible as well

At low Mach numbers, and for thin rotor/stator blades/vanes, the unsteady loading noise dominates the sound production.
Loading noise mechanisms

- **Incoming turbulence noise**
- **Trailing edge (self) noise**
- **T-S waves**
- **Vortex shedding**
- **Boundary layer turbulence**

- **Incoming turbulence**
Viscous and potential interactions

Stator vanes: varying inlet velocity angle and magnitude

Rotor blades: varying outlet velocity angle and magnitude
Viscous interaction: tonal and broadband noise
Tonal and broadband noise

Rotating point force

- FW-H analogy in time domain:

\[
\rho'(x, t) = \int_{-\infty}^{t} \int_{S(\tau)} \frac{\partial G}{\partial y_i} f_i \, d^2 y \, d\tau + \int_{-\infty}^{t} \int_{V(\tau)} \frac{\partial^2 G}{\partial y_i \partial y_j} T_{ij} \, d^3 y \, d\tau + \int_{-\infty}^{t} \int_{S(\tau)} \frac{\partial G}{\partial \tau} \rho_0 V_n \, d^2 y \, d\tau
\]

- Using the free field Green’s function, and for a compact source:

\[
\rho'(x, t) \sim -\frac{1}{4\pi c_0^2} \frac{\partial}{\partial x_i} \int_{S(\tau_0)} \left[\frac{f_i}{R \left| 1 - \mathbf{M} \mathbf{R} / R \right|} \right] \, d^2 \zeta
\]

\[
\sim -\frac{1}{4\pi c_0^2} \frac{\partial}{\partial x_i} \left[\frac{F_i}{RD} \right]
\]

- In the Fourier domain:

\[
\rho(x, \omega) = \frac{ik}{8\pi^2 c_0^2} \int_{-\infty}^{\infty} \frac{\mathbf{F} \cdot \mathbf{R}}{R^2} \left(1 + \frac{1}{ikR} \right) e^{-i\omega(\tau + R/c_0)} \, d\tau
\]
Geometrical far-field approximation for a B-bladed axial rotor

Constructive interference: sound of the total fan = $B \times$ (sound of a single blade)

Bessel function: modulation of the Doppler frequency shift during blade revolution

$$\rho_{nB} \sim -\frac{iBk_{nB}}{4\pi c_0^2} \frac{e^{-ik_{nB}x}}{x} \sum_{p=-\infty}^{+\infty} e^{-i(nB-p)(\varphi-\pi/2)} J_{-nB+p}(-k_{nB}R_0 \sin \theta) \left[F_p^{(T)} \cos \theta - \frac{nB-p}{k_{nB}R_0} F_p^{(D)} \right]$$

Sound emitted at BPFHs

Sum over BLHs

Listener distance

Radius where force is applied

Listener azimuthal angle

Listener polar angle

Drag harmonic

Thrust harmonic
Doppler effect \rightarrow summation over the BLHs

$$\rho_{nB} \sim -\frac{iBk_{nB}}{4\pi c_0^2} \frac{e^{-ik_{nB}x}}{x} \sum_{p=-\infty}^{+\infty} e^{-i(nB-p)(\varphi-\pi/2)} J_{-nB+p}(-k_{nB}R_0 \sin \theta) \left[F_p^{(T)} \cos \theta - \frac{nB - p}{k_{nB}R_0} F_p^{(D)} \right]$$

$B = 4$
Summary

- Aeroacoustical analogies allow extracting a maximum of acoustical information from a given description of the flow field.

- Assuming a decoupling between the sound production and propagation, the analogies provide an explicit integral solution for the acoustical field at the listener position:
 - Improves numerical robustness
 - Permits drawing scaling laws

- **BUT:** one has to make approximations and choices!
 - Acoustical variable (e.g. isothermal noise vs combustion noise)
 - Source term formulation (e.g. Lighthill’s analogy vs Vortex Sound Theory)

- Some formulations make the dominant character of the source appear more explicitly, and allow making useful approximations.
- Without approximations, the analogy is useless!
A few references

- S.W. Rienstra and A. Hirschberg, *An Introduction To Acoustics* (corrections), Report IWDE 01-03 May 2001, revision every year or so...

- And of course: the VKI Lecture Series...