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 Choice of the acoustical variable
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 Aeolian tone

 Ffowcs Williams & Hawkings analogy

 Application to fan noise



Continuity equation

rate of change of 

density moving with 

the fluid particle – (dilatation rate)

 For an infinitesimal fluid particle:



Momentum equation

Acceleration of the 

fluid particle

External body forces 

applied to the fluid 

particle

External stresses applied to the fluid particle:

Hydrostatic 

pressure

Viscous 

stresses



Linearization

 Continuity and momentum equations:

 Perturbations  = deviations with respect to uniform and 
stagnant fluid:

 At first order, the continuity and momentum equations 
become:

Introduced for 

convenience



Acoustic sources

 Eliminate       from the linearized conservation equations:

more unknowns than equations…



Linearized constitutive equation

 Equation of state:

 Perturbation:

 Definition of the speed of sound:



Sources of sound

Non-uniform 

force field

Fluctuating 

viscous stresses

Entropy 

fluctuations

Fluctuating 

mass injection

Mass source is used as model for entropy production.

We assume iso-kinetic injection (no momentum source)

and isentropic process.

D’Alembertian



Monopoles, dipoles, quadrupoles

 Monopole = pulsating 
sphere, jumping in a boat

 Physically: unsteady 
combustion, pipe exhaust, 
vocal folds, …

+

 Dipole = oscillating sphere, 
playing with a ball in a boat

 Less efficient than monopole

 Physically: unsteady forces

-
+

 Quadrupole = deforming 
sphere without change of 
volume nor net force, fighting 
in a boat!

 Less efficient than dipole

 Physically: turbulence

+
-

+
-



Spherical waves

 Homogeneous wave propagation equation in spherical coordinates:

 Same solution as in 1D using          as unknown:

Outgoing wave Incoming wave

 In frequency domain:



Far-field and near-field

 Linearized momentum equation in spherical coordinates:

 Two regimes:

 Far-field:

 Near-field: Locally incompressible flow

Plane wave behaviour

Specific impedance



Acoustical compactness

 Upon normalization using the length scale L and the time scale  :

the wave propagation equation

becomes:

with Helmholtz number

 Compact region: Laplace equation

At low Helmholtz numbers, i.e. in a compact region, the wave propagation equation 

reduces to the Laplace equation, describing an incompressible potential flow

Corollary: an incompressible potential flow model solves the “acoustics problem” 

in a compact region



Acoustical energy

 Manipulating linearized conservation equations:



Acoustical energy and intensity

Acoustic energy

Acoustic intensity

Forces (e.g. vibrating walls)

Entropic processes

(e.g. combustion)

Volume source



Integral formulation for steady 
harmonic oscillations

Power, averaged 

over one cycle

Power generated 

by unsteady 

forces

Power generated by 

unsteady volume 

injection (or entropy 

fluctuations)

Power entering or leaving the 

domain through its boundaries



Free field Green’s function
in 3 dimensions

 Inhomogeneous wave equation:

 Solution:

 Retarded (emission) time:

 Important properties:

 Dirac function  convenient to obtain an integral solution

 Reciprocity:



Solution of the wave equation based 
on Green’s function



Integral solution of the wave equation

 Integrating by parts:

 Further simplifications:

 Silent initial conditions, causality

 No solid surface, OR: non-vibrating surfaces and tailored Green’s fuction

Having an integral formulation improves the numerical stability of 

the prediction when detailed flow data (e.g. LES) are available, and 

otherwise permits deriving scaling laws!



Other Green’s functions

 In a few cases: analytical Green’s functions

 Infinite planes: image sources (semi-anechoic environment)

 Semi-infinite plane (trailing edge noise)

 Infinite straight ducts: rectangular, cylindrical, annular

 In other cases: semi-analytical Green’s functions

 Compact (low-frequency) Green’s functions (Howe)

 Wiener-Hopf technique, Schwarzchild’s technique (TE-LE backscattering, Roger)

 Slowly-varying duct (Rienstra)

 In all other cases: numerical Green’s functions

 Low-frequency techniques

 Finite Element Methods, Boundary Element Methods

 High-frequency techniques

 Ray-tracing methods, Statistical Energy Analysis

 Mid-frequency techniques

 Multigrid techniques, fast multipole BEM, …



Summary
 Assuming small amplitude acoustic perturbations, the equations of fluid motion can 

be linearized and used to derive a wave equation for these perturbations.

 In the linear approximation, the sources of the acoustic field can be due to

 Unsteady mass injection or entropy fluctuations monopolar character.

 Non-uniform forces  dipolar character.

 Fluctuating viscous stresses (and, later, Reynolds stresses)  quadrupolar character.

 Each of these sources has a different radiation efficiency in free field.

 The sound radiation is determined by the source and the impedance which it 
experiences!

 The relationship between the perturbations are given by the linearized momentum 
equation and the linearized constitutive equation:

 An integral formulation of the wave equation can be obtained using Green’s 
functions, which enhances the numerical robustness of the prediction.



Aeroacoustic analogies: why  ?
 Acoustic field  = part of the flow field most straightforward 

approach: Computational AeroAcoustics (CAA)

 But: at low Mach numbers: orders of magnitude of difference between

 Length scales: ac = Lturb / M

 Magnitudes: O(M4) of the flow energy radiates into the far field

 High order schemes needed to capture acoustic propagation

 Numerical cost of a direct CAA scales with Re2 M-4 for a Large Eddy 
Simulation

 Specific issues related to CFD discretisation techniques applied to 
acoustics

 Dissipation and dispersion errors

 Initial and boundary conditions

p’ = 4.4934739 Pa

hydrodynamic

field

acoustic

field



Lighthill’s aeroacoustical analogy : 
concept

 Wave propagation region: linear 
wave operator applies

source
region

observer
in uniform
stagnant

fluid

propagation region
uniform fluid at rest

V

S

x

y
No source

mass momentum

 Turbulent region: fluid mechanics 
equations apply

 The problem of sound produced by a 
turbulent flow is, from the listener’s point of 
view, analogous to a problem of propagation 
in a uniform medium at rest in which 
equivalent sources are placed.



Lighthill’s analogy: formal derivation

Continuity

Momentum



Lighthill’s aeroacoustical analogy : 
reference state
 Reformulation of fluid mechanics equations, and use of arbitrary speed c0 :

 Definition of a reference state:

source
region

observer
position

propagation region
uniform fluid at rest

V

S

x

y

Lighthill’s tensor

Exact… and perfectly useless!

with

 Aeroacoustical analogy :



Sound produced by free isothermal turbulent flows 
at low Mach number

 Solution using Green’s fct

 Purpose: simplify the RHS

 High Reynolds number

 Isentropic

 Low Mach number

integral solution

sound scattering at boundaries

 Using free field Green’s fct

Quadrupolar source



Acoustic scale:

Lighthill’s M 8 law

 Integral solution:

 Scaling law:

D U0

λ

Flow time scale:

Spatial derivative:

Acoustical power:



Choice of the aeroacoustical variable

 Manipulating the mass and momentum equations yields:

 From there, two choices are possible for the acoustical variable:

 Acoustical density perturbation:

Isentropic 

noise 

generation

Combustion 

noise

 Acoustical pressure perturbation:



Curle’s analogy: fixed rigid bodies

 Lighthill’s aeroacoustical analogy:

 Partial integration of source integral

incident field

scattered field

 Integral solution using Green’s function

 Curle’s analogy: uses free field Green’s function



If you know the 
multipolar character 
of your source…

… use the 
corresponding 

Green’s function!



A popular formulation for industrial 
applications

 Curle’s formulation is quite powerful

 It enforces the correct radiation pattern of each source component:
Pquadru / Pdipo ~ M2

 At low Mach numbers, dipolar contribution dominates the quadrupolar 
one for compact sources

 Surface scalar (p’) data are much less demanding in memory than 
volumetric, tensorial (Tij) data

 Surface mesh often available from design stage

 BUT: tricky implementation for non-compact geometries…

Quadrupole, W  M 8

in free field

Dipole, W  M 6

in free field



The hybrid approach from a practical viewpoint

 The computation of flow is decoupled from the computation of sound

 Acoustic prediction: post-processing of source field data

 Fundamental assumption: one-way coupling

 Unsteady flow produces sound and affects its propagation

 BUT: sound waves do not affect flow field significantly

 Principal application of the hybrid approach: flows at low Mach 
numbers

source
region

observer
position

L



d

 Low-Mach number applications

 Incompressible LES / DES solvers to reduce CPU cost

 Careful interpretation of the flow data in aeroacoustical analogy

 Usable simulation tools for the flow description:

 Reynolds Averaged Navier-Stokes (RANS) solver
 time-averaged data (SNGR to reconstruct transient) 

 Unsteady RANS  unsteady, but only large scale 

 Large Eddy Simulation (LES), Detached Eddy Simulation (DES)
 unsteady, broadband turbulence (up to grid & scheme cut-
off frequency)   

http://www.lmfa.ec-lyon.fr/recherche/turbo



Ffowcs Williams and Hawkings analogy: 
moving bodies
 Use of generalized functions to account for body motion

0F

0F

1F

0F

 Body motion trajectory described by function F(x,y,z,t):

 Heaviside and Dirac functions properties:

inside solid body

in fluid region



Conservative equations and analogy 
using generalized functions

 Equations of conservation of mass and momentum can be 
rewritten as:

 The analogy becomes:



Integral solution

 Using the free-field Green’s function:

 More practical to have the source described in a moving coordinate system η
attached to the body.

 Retarded time equation:

 Dirac function property:



Doppler effects

 Applied to the quadrupolar component:

 Final solution:

: vector Mach number : Doppler factor

 The flow intrinsic features (flow separation, turbulent transition, …) are 
expressed in the frame of reference attached to the moving axes.

 The Doppler effects (convective amplification and frequency shift) are given 
by the motion of the sources in the fixed coordinate system.



Effect of relative motion

Fixed monopole Monopole convected at M = 0.7

(source:

Wikipedia)



Doppler amplification

S(t)

θ

θi

S(ti)

Ri

R

x

U0

Doppler factor:

amplitude modulation and directivity



Doppler frequency shift

Doppler factor:

frequency shift

Phase factor :

Modified frequency :

S(t)

θ

θi

S(ti)

Ri

R

x

U0
y(t)

The Doppler factor accounts for all amplitude modulation and 

frequency shift effects; the source unsteadiness can be described in a 

local (moving) coordinate system attached to the moving body. 



 Thickness noise:

Thickness, loading, turbulence noise

 Loading noise: steady and unsteady

 Turbulence noise: same scaling, relative to unsteady loading noise, 
as for the motion loading noise  negligible as well

motionunsteady

U0

w

At low Mach numbers, and for thin rotor/stator blades/vanes,

the unsteady loading noise dominates the sound production. 



Loading noise mechanisms

Incoming 

turbulence

Boundary layer 

turbulence

Trailing edge

(self) noise

Incoming 

turbulence noise

Vortex sheddingT-S waves



Viscous and potential interactions

ΩR

Stator vanes: varying inlet 

velocity angle and magnitude

Rotor blades: varying outlet 

velocity angle and magnitude



Viscous interaction:
tonal and broadband noise

ΩR



Tonal and broadband noise

Kucukcoskun, K., Christophe, J., Schram, C., Holmberg, M., ISROMAC15, 2014.

Qv ↑

Qv ↑



Rotating point force
 FW-H analogy in time domain:

loading noise quadrupolar noise thickness noise

 Using the free field Green’s function,
and for a compact source:

 In the Fourier domain:

Near-field

FR
FTFD

t’

3

ex

ey

ez

y x

Rxy





R0



Geometrical far-field approximation for 
a B-bladed axial rotor

Constructive interference:

sound of the total fan =

B x (sound of a single blade)

Sound 

emitted at 

BPFHs

Sum over 

BLHs

Bessel function: modulation of 

the Doppler frequency shift

during blade revolution

Radius where 

force is applied

Listener

polar angle

Thrust 

harmonic

Drag 

harmonic
Listener 

azimuthal

angle

Listener 

distance

FR
FTFD

t’

3

ex

ey

ez

y x

Rxy





R0



BLH

Ω 2Ω 3Ω 4Ω 5Ω 6Ω 7Ω 8Ω 9Ω0

2πf (rad/s)

BΩ 2BΩ0

2πf (rad/s)

BPFH

-Ω-2Ω-3Ω-4Ω-5Ω

Doppler effect  summation over the BLHs

B = 4



Summary

 Aeroacoustical analogies allow extracting a maximum of acoustical 
information from a given description of the flow field

 Assuming a decoupling between the sound production and propagation, the 
analogies provide an explicit integral solution for the acoustical field at the 
listener position

 Improves numerical robustness

 Permits drawing scaling laws

 BUT: one has to make approximations and choices!

 Acoustical variable (e.g. isothermal noise vs combustion noise)

 Source term formulation (e.g. Lighthill’s analogy vs Vortex Sound Theory)

 Some formulations make the dominant character of the source appear more 
explicitly, and allow making useful approximations.

 Without approximations, the analogy is useless!
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